316 research outputs found

    Dose-adapted post-transplant cyclophosphamide for HLA-haploidentical transplantation in Fanconi anemia.

    Get PDF
    We developed a haploidentical transplantation protocol with post-transplant cyclophosphamide (CY) for in vivo T-cell depletion (TCD) using a novel adapted-dosing schedule (25 mg/kg on days +3 and +4) for Fanconi anemia (FA). With median follow-up of 3 years (range, 37 days to 6.2 years), all six patients engrafted. Two patients with multiple pre-transplant comorbidities died, one from sepsis and one from sepsis with associated chronic GVHD. Four patients without preexisting comorbidities and early transplant referrals are alive with 100% donor chimerism and excellent performance status. We conclude that adjusted-dosing post-transplant CY is effective in in vivo TCD to promote full donor engraftment in patients with FA

    Path integral formulation of Hodge duality on the brane

    Get PDF
    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank anti-symmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this note, we implement the Hodge duality via path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.Comment: 7 pages, LaTe

    Relating Quantum Information to Charged Black Holes

    Full text link
    Quantum non-cloning theorem and a thought experiment are discussed for charged black holes whose global structure exhibits an event and a Cauchy horizon. We take Reissner-Norstr\"{o}m black holes and two-dimensional dilaton black holes as concrete examples. The results show that the quantum non-cloning theorem and the black hole complementarity are far from consistent inside the inner horizon. The relevance of this work to non-local measurements is briefly discussed.Comment: 14 pages, 2 figure

    Black Hole Horizons and Complementarity

    Get PDF
    We investigate the effect of gravitational back-reaction on the black hole evaporation process. The standard derivation of Hawking radiation is re-examined and extended by including gravitational interactions between the infalling matter and the outgoing radiation. We find that these interactions lead to substantial effects. In particular, as seen by an outside observer, they lead to a fast growing uncertainty in the position of the infalling matter as it approaches the horizon. We argue that this result supports the idea of black hole complementarity, which states that, in the description of the black hole system appropriate to outside observers, the region behind the horizon does not establish itself as a classical region of space-time. We also give a new formulation of this complementarity principle, which does not make any specific reference to the location of the black hole horizon.Comment: Some minor modifications in text and the title chang

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)−1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)−1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition

    Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability

    Get PDF
    The duration of dry or wet hydrological epochs (run lengths) associated with positive or negative Inter-decadal Pacific Oscillation (IPO) or Pacific Decadal Oscillation (PDO) phases, termed Pacific decadal variability (PDV), is an essential statistical property for understanding, assessing and managing hydroclimatic risk. Numerous IPO and PDO paleoclimate reconstructions provide a valuable opportunity to study the statistical signatures of PDV, including run lengths. However, disparities exist between these reconstructions, making it problematic to determine which reconstruction(s) to use to investigate pre-instrumental PDV and run length. Variability and persistence on centennial scales are also present in some millennium-long reconstructions, making consistent run length extraction difficult. Thus, a robust method to extract meaningful and consistent run lengths from multiple reconstructions is required. In this study, a dynamic threshold framework to account for centennial trends in PDV reconstructions is proposed. The dynamic threshold framework is shown to extract meaningful run length information from multiple reconstructions. Two hydrologically important aspects of the statistical signatures associated with the PDV are explored: (i) whether persistence (i.e. run lengths) during positive epochs is different to persistence during negative epochs and (ii) whether the reconstructed run lengths have been stationary during the past millennium. Results suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ∌100 years), or even in the shorter 300–400-year paleoclimate reconstructions, is representative of the full range of variability.</p

    On 't Hooft's S-matrix Ansatz for quantum black holes

    Full text link
    The S-matrix Ansatz has been proposed by 't Hooft to overcome difficulties and apparent contradictions of standard quantum field theory close to the black hole horizon. In this paper we revisit and explore some of its aspects. We start by computing gravitational backreaction effects on the properties of the Hawking radiation and explain why a more powerful formalism is needed to encode them. We then use the map bulk-boundary fields to investigate the nature of exchange algebras satisfied by operators associated with ingoing and outgoing matter. We propose and comment on some analogies between the non covariant form of the S-matrix amplitude and liquid droplet physics to end up with similarities with string theory amplitudes via an electrostatic analogy. We finally recall the difficulties that one encounters when trying to incorporate non linear gravity effects in 't Hooft's S-matrix and observe how the inclusion of higher order derivatives might help in the black hole microstate counting.Comment: 22 Pages. Latex Fil

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe
    • 

    corecore